Главная страница

Главная страница | Архив | Содержание номера

Номер 19(330) 17 сентября 2003 г.

Борис КУШНЕР (Питтсбург)

УЧИТЕЛЬ*

Борис Кушнер

Более чем вероятно, что Марков Ст. хотел видеть сына математиком, продолжателем семейной традиции. Ведь и брат его, дядя Андрея, Владимир Андреевич Марков (8 мая 1871 г. — 18 января 1897 г.), был замечательным математиком, оставившим после себя, несмотря на безвременную смерть от туберкулёза, выдающиеся научные труды27

Но первой научной любовью Андрея стала химия. Возможно, сказалась влюблённость в эту науку одного из его домашних учителей. Возможно, сыграло свою роль и свойственное юности движение противоречить родителям. Возможно, мальчик смутно опасался синдрома «сына Моцарта»28. Быть сыном знаменитого отца вообще нелегко, а разделять при этом с ним профессию и вовсе непросто.

Как бы то ни было, отец отнёсся к увлечению химией вполне серьезно, отдав под химическую лабораторию свой рабочий кабинет. Должен сказать, что и сам Марков, Ст. был химии не чужд. Я видел в доме Марковых крайне интересные старинные фотографии, выполненные академиком Марковым. А.А.-3, профессиональный фотограф высокого класса, рассказывал мне, что они относились ко времени, когда светочувствительные эмульсии приготовлялись собственными руками и были они настолько малочувствительны, что для автопортрета просто открывали крышку объектива и, не торопясь, устраивались в кресле перед камерой. Мне всегда вспоминались фотографии совершенно пустых (в разгар дня!) бульваров, сделанные на заре фотографии. При часовой или более того экспозиции никто из прохожих не запечатлевался, они становились как бы невидимками. В конечном счете, химия не ушла из дома Марковых. Младший сын моего учителя, Михаил Андреевич Марков был химиком, кандидатом химических наук…

Так или иначе, весною 1919 г. Андрей был зачислен по специальному ходатайству отца вольнослушателем химического отделения физико-математического факультета Петроградского университета.

Владимир Андреевич Марков

Я процитирую неоконченные воспоминания А.А. Маркова, Мл. по вводной статье Н.М. Нагорного к первому тому Избранных Трудов Маркова29:

«Факультет этот (физико-математический — Б.К.) объединял тогда физику, математику, химию и даже биологию. Я набросился на все эти науки. Слушал блестящие лекции Ореста Даниловича Хвольсона по физике; лекции, тоже блестящие, Льва Александровича Чугаева по химии; лекции биологов Шимкевича и Дерюгина; лекции кристаллографа Земятченского».

Каким студентом был юный Марков? Вот ещё один отрывок из воспоминаний, знакомый мне также из устных рассказов Андрея Андреевича30:

«В то время я был очень высокого мнения о самом себе. Считал, что запоминать ничего не надо, так как всё можно тут же «вывести». Это привело к катастрофе — к провалу на экзамене по математике. Нам, «химикам», математику читал Константин Бенедиктович Меликов, человек с красивой бородой. Он читал хорошо. На экзамене он мне задал доказать теорему Менье (дифференциальная геометрия). Я начал откуда-то «выводить» её, но, просидев час, вывел только равенство 0=0. Мне было предложено придти через две недели. Я «подтянулся» и сдал этот экзамен».

Рассказывая этот эпизод, и, добираясь до безусловно верного равенства 0=0 (оно выговаривалось значительно и торжественно), А.А. всегда смеялся.

Вспоминает А.А. и другой интересный эпизод, в котором фигурирует профессор-математик Александр Васильевич Васильев, обративший внимание на одарённого студента. Он31 «… организовал семинар по изучению математической логики. Я был поражён, узнав о существовании такой науки. Как!? Неужели можно применить алгебраическую символику для выражения чего-то совсем не числового!? Я пошёл на этот семинар. Там делал доклад о работах Пеано32 вечный студент с рыжей шевелюрой и такой же рыжей бородой Константин Васильевич Трофимов. Он определял «нуль» и «единицу» согласно Пеано с помощью огромного количества формул, что было потрясающе. Я дал себе слово в будущем непременно заняться математической логикой».

Знавшим Маркова, нетрудно уловить в приведённых живых отрывках своеобразную, присущую А.А. иронию и самоиронию (особенно ценная и не слишком часто встречающаяся черта). Любопытно отметить, что А.А. Марков, Ст. не принимал профессора Васильева всерьёз. Ирония второго отрывка знаменательна ещё и тем, что «Воспоминания» относятся к последним годам жизни Маркова и что математической логикой он «занимался» с середины сороковых годов до самой смерти в 1979 г.

Летом 1920 г., после первого курса, юный Марков принял участие в работе по экспериментальной химии. Результаты этого исследования впоследствии (1924 г.) были опубликованы в соавторстве с двумя химиками. Таким образом, первая публикация выдающегося математика А.А. Маркова, Мл. была по химии! Трудно сказать, почему юноша быстро оставил химию, науку, в которой был достигнут первый успех. Не без иронии Марков уже на моей памяти говорил что-то вроде:

«Химия, знаете ли, странная наука. Реакция запущена, а ты должен стоять и ждать. Реакция идёт, а ты стоишь и ждёшь…»33.

Ко второму курсу интересы Маркова обратились к теоретической физике, и именно по физическому отделению он и закончил в 1924 г. университет (уже переименованный в Ленинградский).

О научном наследии А.А. Маркова, Мл. рассказывать нелегко. Он был учёным редкостной разносторонности, оставившим непреходящий след в самых различных областях математики, механики и физики. Недаром комментарии к его работам в выходящем двухтомнике34 составлены большим коллективом специалистов весьма разного научного профиля.

А.А. Марков, Мл.

Расставшись с химией, молодой Марков опубликовал циклы работ по небесной механике и теоретической физике. Ему, в частности, принадлежит одна из самых первых публикаций по квантовой механике в СССР. А вот впечатляющее название, указывающее на философские и космогонические интересы молодого учёного: «О выводимости мировой метрики из отношения «раньше, чем»«. Начав с теоретической физики, Марков пришёл к весьма абстрактным областям математики. Эффект «сына Моцарта» не состоялся, Марков, Мл. занял в математическом пантеоне достойное место, рядом со своим отцом. Таланты отца и сына оказались равновеликими. Как счастлив был бы Андрей Андреевич Марков, Старший!

Следует сказать, что занятия абстрактной математикой не прерывали интереса к приложениям. В списке трудов можно найти работу по прикладной геофизике, цитируемую в учебниках, а также работы прикладного характера, явившиеся его вкладом в оборону страны35. А.А Марков наравне со всеми стойко переносил тяготы блокады, участвовал в тяжёлых физических работах. Дважды в морозные дни его жизнь была на волоске, когда он терял сознание от истощения на улице. Жена Андрея Андреевича Прасковья Андреевна сдавала, вопреки предостережениям врачей, кровь в блокадном Ленинграде и в конце жизни оказалась в результате прикованной к постели36.

В первые послевоенные годы внимание Маркова обратилось к основам математики, математической логике. Его пытливый, ничего на веру не принимающий ум всматривался в самый фундамент, на котором было возведено величественное здание математики. Собственно говоря, подобные глубокие раздумья были ему присущи всегда, но теперь они заняли первенствующее место в его работе. Андрей Андреевич приступил к созданию своего главного детища, совершенно нового построения математики, можно сказать к созданию новой математики, которую он назвал конструктивной. Сегодня эту математику называют конструктивной математикой Маркова.

Поводы для сомнений, раздумий были нешуточные. К началу 20-века в основаниях математики наступил очередной кризис, вызвавший большой резонанс в математических кругах. Кризис этот до сих пор не преодолён, и я сомневаюсь, что существует абсолютный ответ на него, какой-то абсолютный выход.

Речь шла о самой природе математики. Что она изучает, что собой представляют математические объекты, в каком смысле они существуют и т.д. Подобные вопросы, разумеется, ставились на протяжении всей истории научной деятельности человека, но в обсуждаемое время они приобрели особенную остроту в связи с появлением теории множеств и универсальным распространением языка этой теории на математику. Теория множеств была почти единолично развита в конце 19-го века великим немецким математиком и мыслителем Георгом Кантором37, который, кстати, сам употреблял более точное именование «Учение о Множествах». В 1985 г. издательство «Наука» выпустило в серии «Классики Науки» великолепный том переводов трудов Кантора38. Книга эта просто бесценный источник для всех, кто интересуется историей и философией науки. Кантор далеко выходит за пределы собственно математики, обращаясь к теологии и обсуждая философскую сторону своих построений не только с математиками39, но и с богословами. Действительно, способность нашего Духа, как поэтической его части, так и интеллектуальной, выходить за пределы повседневного ограниченного опыта конечного, смертного существа, оперировать с Бесконечностью заставляет вспомнить, по Чьему Образу и Подобию мы были сотворены40.

Рассказать обо всём этом неподготовленной аудитории нелегко, но я всё же попробую что-нибудь сделать в этом направлении. Опыт, и как мне кажется положительный, такого устного рассказа у меня есть. Незадолго до отъезда в 1987 или в 1988 г. я прочёл доклад по теории множеств на философском семинаре института им. Гнесиных в Москве. Теория множеств для музыкантов! Это было захватывающе интересно (по меньшей мере, для меня самого)41.

Кантора можно назвать Поэтом Бесконечного. До него Бесконечность представлялась неразличимым бесструктурным целым, противоположным конечному, тому, что можно перечислить, сосчитать. Что-то вроде синих очертаний гор на горизонте. Кантор открыл невероятную по богатству Страну Бесконечного, множество типов бесконечности, находящихся в удивительных отношениях друг с другом. Он определил, в каком смысле две бесконечности одинаковы по «количеству» составляющих их элементов, и в каком одна «больше» другой. Например, оказалось, что смутно ощущаемое превосходство непрерывной бесконечности точек прямой над бесконечностью ряда положительных целых чисел 1,2,3,… может быть выражено точным математическим утверждением (знаменитая теорема Кантора (1873 г.)42 о несчётности континуума). Первая бесконечность мощнее, больше второй. В то же время Кантор с изумлением обнаружил, что на прямой «столько же» точек, сколько во всём пространстве43. Страна Бесконечного таила свои опасности, и главные из них были ещё впереди.

Георг Кантор

Другим удивительным достижением Кантора была обнаруженная возможность «счёта за «тремя точками»«в ряде положительных целых чисел 1,2,3,…, т.е. введение бесконечных, трансфинитных чисел и построение их арифметики (1,2,3,…,w, w+1,…, где w — первое бесконечное число). Уходящий в необозримые, захватывающие дух дали бесконечного ряд таких чисел — одно из самых прекрасных, воистину божественных построений человеческого разума… Хорошо помню мои школьные годы, изумление, с которым я постигал эти открытия в математическом кружке при МГУ.

Предметом изучения в теории множеств, как показывает само название, являются множества. Но что это такое? Простого ответа здесь нет. Понятие это считается первоначальным, неопределяемым, постигаемым интуицией, развиваемой примерами. По-видимому, наилучшей остаётся характеристика этого фундаментального понятия, данная самим Кантором: «Под «множеством» мы понимаем соединение в некое целое М определённых хорошо различимых предметов нашего созерцания или нашего мышления, (которые будут называться «элементами» множества М)»44. Можно говорить о множестве яблок на данной яблоне, о множестве слушателей в данном концертном зале и т.д. Математика естественно больше интересуют множества, связанные с его профессиональной деятельностью. Например, можно говорить о множестве всех нечётных совершенных чисел (ср. выше). Никто сегодня не знает, содержит ли это множество хоть один элемент45.

При рассмотрении множеств Кантор свободно пользовался так называемой абстракцией актуальной бесконечности, позволяющей рассматривать бесконечные совокупности одновременно существующих объектов. Наряду с этой абстракцией в философии с античных времён рассматривалась не столь драматическая идея потенциальной, становящейся бесконечности. Проще всего объяснить имеющееся здесь различие на примере положительных целых чисел. Эти числа возникают в процессе естественного счёта — один, два, три… В каждый момент времени считающий субъект достигает определённого этапа, определённого числа… Идея потенциальной бесконечности, потенциальной осуществимости позволяет отвлечься здесь от ограниченности наших возможностей в пространстве и времени, по существу отвлечься от нашей смертности, и считать, что сколь угодно большие числа (скажем, миллиард миллиардов) могут быть достигнуты в процессе счёта. Но при всём этом в каждый момент времени только определённое число будет достигнуто считающим субъектом, у которого, однако, будет оставаться возможность продолжения счёта. Выражаясь метафорически, за каждым настоящим временем будет оставаться время будущее. Абстракция актуальной бесконечности состоит в гораздо более смелом акте воображения, при котором весь процесс счёта мыслится завершённым, все числа достигнутыми, одновременно существующими, все времена счёта осуществившимися…

Идею потенциальной бесконечности можно связать с оптимистической верой в наше родовое бессмертие: то, что не успею сделать я, сделают дети, ученики, последователи, дети детей, ученики учеников и т.д. С другой стороны, поэты всех времён и народов воспевали бесконечность звёзд в ночном небе. Самого простого акта поэтического воображения достаточно, чтобы воспринимать ряд телеграфных столбов, уходящих за горизонт, или же уходящую за горизонт ленту шоссе, как явления бесконечные, даже если хорошо знаешь, что это шоссе Москва — Симферополь…

Различие между двумя видами бесконечности, очевидно, скорее интеллектуальное, для наших ежедневных дел несущественное. Однако оно имеет огромное практическое значение при построении математики.

Разумеется, возникает вопрос и о природе математических объектов. В каком смысле существует, скажем, множество всех положительных целых чисел, или, гораздо каверзнее, множество всех множеств положительных целых чисел? Кантор занимал здесь радикальную позицию, называемую в сегодняшней философии математики математическим платонизмом46. Великий немецкий мыслитель считал, что те же трансфинитные числа не менее реальны, чем звёзды на небе. Предполагается, что имеется некий надсубъективный мир математических объектов, в котором и существуют всевозможные множества. Математические утверждения выражают факты устройства, обстояния вещей в этом мире. Соответственно, любое корректно сформулированное утверждение о математических объектах (скажем, «существует нечётное совершенное число») либо верно, либо нет в том же вечном, от наших соглашений и знаний независимом смысле. Таким образом, приобретают универсальный статус и законы аристотелевской логики, в особенности закон исключённого третьего, формулировкой которого и являлось предыдущее предложение. По известному афоризму, математик не изобретает, но открывает свои теоремы, примерно, как географ-мореплаватель открывает неизвестные острова в океане47.

Кантор провозглашал нашу способность свободно оперировать с бесконечностью, ничем не ограниченную постигающую и созидающую мощь нашего духа. «Сущность математики — в её свободе», — таков был прекрасный, поэтический лозунг великого математического романтика.

Но у свободы есть, как мы хорошо знаем, цена, и романтика иногда далеко заводит. Надо сказать, что Кантор заплатил страшную цену за прорыв в Бесконечное. Душевное заболевание прогрессировало, всё больше мешало ему работать. Великий мыслитель умер в нервной клинике…

Уже самому Кантору были известны парадоксы теории множеств, попросту говоря, противоречия в ней, возникавшие на её окраинах и связанные именно с неограниченной свободой в образовании самых общих понятий. Положение это, по существу, было нетерпимым — ведь по тем же законам классической, аристотелевской логики, имея противоречие, можно доказать всё, что угодно. Вот пример парадокса, известного Кантору, и показывающего опасность чрезвычайно общих понятий. Кантором была доказана красивая теорема о том, что по всякому множеству можно найти множество большей мощности, содержащее «большее» число элементов48. Применение этого результата к множеству всех множеств приводит к немедленному, очевидному противоречию, напоминающему, кстати, парадоксальные ситуации в физике, когда речь идёт о «всей» Вселенной. Наиболее знаменитый из парадоксов был открыт в начале XX века английским философом и математиком Бертраном Расселом (Russel, Bertrand 1872-1970). Интересно, что и в случае парадокса Рассела источником беды являлась именно неограниченная свобода в образовании множеств, чрезвычайная общность этого понятия. Сам же парадокс, в сущности, воспроизводил в рамках теории множеств ситуации, известные с глубокой античности49.

Теория Множеств Кантора, встретив поначалу серьёзные возражения, постепенно утвердилась в качестве главной методологии математики. Ряд поразительных открытий был сделан на этом пути. Достаточно упомянуть формулировку в 1904 г. немецким математиком Эрнстом Цермело (Zermelo, Ernst 1871-1953) аксиомы, носящей его имя (и называемой также Аксиомой Выбора). Этот принцип чрезвычайно общей природы давно употреблялся в математике, но его не выделяли и не замечали. Между тем, Аксиома Выбора позволила строго доказать совершенно поразительные утверждения. Пожалуй, самым эффектным из них является так называемый парадокс Банаха-Тарского (1920 г.): любой шар можно разбить на конечное число частей, из которых надлежащими перемещениями их в пространстве можно составить два точно таких же шара. Просто чудеса из Библии, но на сей раз в математике! Термин «парадокс» применяется к этой корректно доказанной теореме ввиду невероятности полученного результата. Воистину эти разбиения и «надлежащие» перемещения уже более принадлежат Б-жественной Сущности, чем нашей. Но также сильно чувствуется, что созданы мы по Образу и Подобию, коль скоро способны заметить усилием интеллектуального воображения тени этих «надлежащих» перемещений. Последовавшее изучение природы Аксиомы Выбора и некоторых других принципов теории множеств привело к открытиям, сравнимым по значению с открытием неевклидовой геометрии или теории относительности в физике.

Естественно, что укоренение теории множеств в качестве языка математики вызвало горячие дискуссии ведущих математиков конца 19-го начала 20-го века. Дискуссии эти продолжаются по сей день, что неудивительно, поскольку речь идёт о самом фундаменте математики.

Одной из реакций на открытие противоречий была идея ограничения понятия множества (на что указывал уже сам Кантор), построение аксиоматических систем теории множеств, исключающих известные парадоксы. Большой вклад принадлежит здесь Цермело, разработавшему самую известную аксиоматику теории множеств, и великому немецкому математику Давиду Гильберту (Hilbert, David 1862 — 1943), выдвинувшему программу обоснования теоретико-множественной математики50 посредством надёжных, финитных доказательств непротиворечивости, формализующих её аксиоматических систем. Мы не можем здесь углубляться в эту интереснейшую и труднейшую область математики. Заметим лишь, что отсутствие противоречий в этих аксиоматических системах, начиная с формальной арифметики, не доказано и знаменитые результаты Гёделя (Gцdel, Kurt 1906 — 1978) указывают, что никаких надежд на решающий прогресс в этом направлении нет.

Принципиально другой была реакция математиков, которые не могли согласиться с самими принципами, на которых покоился теоретико-множественный подход. Эти учёные подчёркивали удалённость построений теории множеств от конструктивных, реальных возможностей человека. Таким образом, появились конструктивистские направления в математике, отвергавшие актуальную бесконечность (сомнения в её допустимости восходят к Аристотелю, т.е. к четвёртому веку до нашей эры!), математическую Вселенную Кантора и соответственно универсальный характер закона исключённого третьего. Естественным выводом была необходимость радикальной перестройки практически всего здания математики.

Для человека, наблюдающего возникшую острейшую полемику со стороны, самым поразительным могло оказаться невероятное, трагическое различие в понимании истины учёными огромных дарований, безупречной честности и одушевлённых беспредельной любовью к своей науке. И это в Математике, Царице наук, отличающейся по всеобщему мнению особенной, безукоризненной точностью и строгостью! Тут есть о чём задуматься, здесь есть, безусловно, и драматический и литературный материал, ещё ожидающий своего Шекспира. И возникает крамольная мысль: а так ли уж строже, точнее математика, чем, скажем, химия? Интереснейшую статью на эту и многие другие темы написал известный математик и филолог, профессор Московского Университета Владимир Андреевич Успенский51, с которым я имею счастье быть близко знакомым в течение многих лет.

Вообще, оглядываясь на динамику кризиса оснований математики, можно заметить аналогию с событиями в литературе, искусстве. И там были различного рода реакции на романтизм, порою весьма резкие. Кого только не сбрасывали с кораблей современности. При взгляде с расстояния времени видно, что и сами такие течения (жизнеспособные, художественно значимые из них) обретали собственную романтику…

Лютцен Брауэр

В 20-м веке было три главных конструктивных направления (перечисляю их хронологически): так называемый интуиционизм, основанный голландским математиком Лютценом Брауэром (Brouwer, Luitzen Egbertus Jan 1881 — 1966), конструктивная математика А.А. Маркова, Мл. и конструктивная математика американского математика Эррета Бишопа (Bishop, Errett 1928 — 1983).

Все три конструктивных школы разделяли резкую критику платонистской онтологии теоретико-множественной математики (иногда по контрасту с новыми течениями называемой классической). Критика эта, решающая роль в формулировках которой принадлежит Брауэру, в частности отвергала идею актуальной бесконечности, неограниченной применимости законов традиционной логики, особенно закона исключённого третьего, метафизический надсубъективный статус математических объектов. Сами эти объекты рассматривались как результаты интеллектуальной или фактической деятельности человека, а не как нечто существующее вечно и само по себе. Каждое течение развило собственное мировоззрение и строило математику, следуя таковому. При многом общем, имелись существенные философские и конкретные различия. Мы не можем здесь углубляться в эту проблему. Боюсь, я уже отпугнул многих читателей, приоткрыв дверь (или, приподняв крышку ларца Пандоры?) в опасную страну Оснований Математики52. Скажу только ещё несколько слов о конструктивной математике Маркова.

Вероятно корни марковского конструктивного мировоззрения лежат в его опыте естествоиспытателя, тяготеющего к осязаемости получаемых результатов, и в общей независимости его личности, не готовой автоматически следовать установившимся канонам, подвергающей их анализу и отклоняющей, если каноны этого анализа не выдерживают.

Объектом изучения в марковской математике являются конструктивные объекты и конструктивные процессы, выполняемые с этими объектами. Для всех реальных целей этой математики вполне достаточно одного общего типа конструктивных объектов — слов в алфавите. При этом, разумеется, принимаются некоторые идеализирующие соглашения, коротко говоря, допускается наша способность опознавать буквы, слова как графически одинаковые или различные. Таким образом, мы можем говорить, например, о букве «а» русского алфавита, отвлекаясь от различий в реальных появлениях этого знака в словах, которые мы пишем или печатаем. Каждый, кто сталкивался с документами, написанными плохим почерком или даже просто с печатными (не говорю уж о рукописных) текстами в готике, понимает, что здесь идёт речь именно об идеализации. С другой стороны, наша способность читать, распознавать графемы лежит в самой основе интеллектуальной деятельности человека. Целые числа, очевидно, можно трактовать как слова в алфавите, который мы видим на клавиатуре нашего компьютера, то же самое можно сказать и о рациональных числах. Скажем, 2/3, очевидно, слово. О том, как распространяется этот подход на «высшую математику», можно прочесть в уже упоминавшейся (примечание 52) моей монографии.

В центре конструктивной математики Маркова находится также точное понятие алгорифма. Несколько огрубляя ситуацию, можно сказать, что алгорифмы — это компьютерные программы. Сами же компьютеры имеют возможность наращивать по мере необходимости память и потенциально не ограничены во времени выполнения программ. Точные понятия алгорифма были выработаны в математике в тридцатых годах 20-го века, и характерно, что случилось это в недрах именно оснований математики, в ходе работ по преодолению кризиса этих оснований. Андрей Андреевич включился в эту работу сразу после войны, когда и начался его «конструктивный период». Впрочем, в частных беседах А.А. говорил, что имел ясно выраженные «конструктивные» наклонности много раньше. А.А. Маркова, Мл. можно смело считать одним из пионеров теории алгорифмов и компьютерных наук, информатики (Computer Science). Им было предложено одно из ведущих современных точных понятий алгорифма (нормальные алгорифмы Маркова) и написана ставшая уже классической монография53, содержащая первое в математической практике строгое изложение теории слов и доказательства правильности работы тех или иных алгорифмов. Помимо прочего, это предвосхищало ряд современных направлений в информатике.

Сама природа конструктивных объектов и процессов подсказывает новый подход к пониманию математических суждений. Например, существование конструктивного объекта считается установленным, если указан потенциально выполнимый способ построения этого объекта. При этом многие привычные принципы оказываются неприемлемыми. В особенности это относится к закону исключённого третьего и к косвенным методам доказательств, на нём основанных. Например, в доказательствах по хорошо знакомой схеме «от противного» существование конструктивного объекта устанавливается приведением к противоречию гипотезы, что искомый объект не существует. При этом никакого способа построения искомого объекта не предлагается, и он оказывается не осязаемым, чем-то вроде призрака. И такие призраки бродят по всей традиционной математике. Из сказанного ясно, что в конструктивной логике «быть» гораздо сильнее, чем «не может не быть». Впрочем, и в обычной речи здесь имеется явный стилистический оттенок, предложение «я выразил своё возмущение этому господину» звучит сильнее, категоричнее, чем «я не мог не выразить своего возмущения этому господину»54.

По-видимому, Брауэр был первым учёным, сделавшим эпохальный шаг в осознании не универсального характера классической логики. Различные философии, различные приложения могут требовать различных логик. Эта множественность духовно сродни множественности геометрий, открытой в XIX-м веке Лобачевским, Бойяи и Гауссом. Брауэр же сформулировал основные принципы интуиционистской логики, с несущественными для нас нюансами являющейся также логикой конструктивной математики. Выражаясь кратко, классическая логика есть логика идеализированного математического бытия, абсолютного знания этого бытия, тогда как конструктивная логика есть логика наших умений.

Продолжение следует


*  Продолжение. Начало см. «Вестник» #18(329), 2003 г.

27 Ещё одна апокрифическая история. Андрей Андреевич принимает экзамен у Владимира Андреевича, даёт ему задачу, которую экзаменуемый почти мгновенно решает.

– Молодец, я бы так быстро это не сделал, — говорит А.А.

– Ну, ты у нас известный дурак в семье, — отвечает В.А.

Здесь, как и положено по законам мифологии, анекдот обрывался, не сообщая, как ответил брату Марков, Ст. Случись это наяву, думаю, Андрей Андреевич рассмеялся бы. На более серьёзной ноте коллега Маркова В.А. Стеклов писал о нём: «В спорах он мог стерпеть какие угодно резкие выражения по своему адресу, лишь бы они строго относились к существу дела и не отклоняли его в сторону, не отвлекали от главной темы в сторону личных чувств или компромиссного, обыкновенно никого не удовлетворяющего решения». (Гродзенский, цит. соч. 1987, стр. 72).

28 Франц Ксавер (позднее Вольфганг Амадей) Моцарт (1791 — 1844), младший сын Моцарта, стал пианистом и композитором. Карьера его была неудачной, а жизнь печальной (см., H. Gдrtner, Constanze Mozart. After the Requiem, Amadeus Press, Portland Oregon, 1991, пер. с нем.). Впрочем, известны и примеры противоположного свойства. Например, династия Бахов, сыновья Иоганна Себастьяна, великолепные композиторы, чувствовали себя прекрасно на своём поприще, а славой при жизни, пожалуй, превосходили отца. Можно также вспомнить и математическую династию Бернулли. Но имеется и множество примеров феномена «сына Моцарта».

29 Марков, цит. соч. 2002, стр.XII. Воспоминания А.А., написанные им в поздние годы, не окончены и были мне недоступны при написании настоящего очерка. «Воспоминания» упоминаются и цитируются в статье Н.М. Нагорного «От составителя» в упомянутом выше томе трудов Маркова, и в книге Гродзенского, 1987. Не знаю, имеется ли в виду одна и та же рукопись.

30Там же, стр. XIII.

31 Там же, стр. XIII.

32 Guiseppe Peano (1858 — 1932), выдающийся итальянский математик. Среди его основных достижений — разработка аксиоматики арифметики.

33 Я где-то читал похожее высказывание Пабло Сарасате. Получив партитуру скрипичного Концерта Брамса (а концерт, как и Бетховенский, начинается развёрнутым оркестровым вступлением), испанский виртуоз сказал, что музыка-то хорошая, но «неужели этот человек воображает, что я буду стоять десять минут на эстраде и ничего не делать?»

34 В первом томе двухтомника Маркова (цит. выше) имеется наиболее полный на сегодняшний день список его трудов (120 названий). Нельзя снова не отметить выдающуюся роль составителя двухтомника Н.М. Нагорного в сохранении, описании и осмыслении марковского научного наследия.

35 Здесь, например, можно упомянуть недавно обнаруженное авторское свидетельство 1941 г. «О движении авиаторпеды по почти вертикальной части траектории». Работа, результаты которой были переданы Главному Артиллерийскому Управлению, была выполнена совместно с погибшим позже на войне М.Я. Перельманом, сыном знаменитого автора популярных книг по различным наукам.

36 Марков 2002, стр. VI.

37 Georg Cantor (1845 — 1918). Вслед за Кантором следует упомянуть другого великого немецкого математика Рихарда Дедекинда (Richard Dedekind (1831 — 1916)).

38 Георг Кантор, "Труды по теории множеств", под ред. А.Н. Колмогорова и А.П. Юшкевича, «Наука», Москва 1985. Замечательный очерк Теории Множеств, включающий философские и исторические вопросы, можно найти в монографии Френкеля и Бар-Хиллела «Основания Теории Множеств», Мир, Москва 1966, пер. с англ. Англ. оригинал: Foundations of Set Theory, North-Holland Publ. Co, Amsterdam, 1958.

39 Огромный интерес представляет переписка Кантора с Дедекиндом.

40 Самая первая фраза, открывающая Библию, «В начале сотворил Б-г небо и землю», прочитанная в оригинале, содержит загадку, переводом не переданную (невероятно трудно переводить Танах!) Стоящее в оригинале слово «Элохим», переведённое, как Б-г, грамматически является множественным числом от «Эл» («бог», скорее в языческом смысле слова), однако, управляет глаголами в единственном числе. И эта грамматическая странность настойчиво проводится в Танахе. Одно из объяснений состоит в том, что здесь необычная грамматика выражает идею постижения нашим Духом Единого Б-га, вобравшего в себя и преодолевшего все прежние языческие божества. Основная интеллектуальная операция теории множеств, при которой из предстоящих нашему воображению или взгляду объектов создаётся новая сущность, новый объект — множество данных предметов, сродни этой фундаментальной теологической конструкции.

41 Случилось так, что буквально в те же дни меня попросили сделать доклад на ту же тему для аспирантов-математиков мех-мата МГУ. Переключаться с одной аудитории на совершенно другую было тоже крайне интересно.

42 Многие источники относят это фундаментальное открытие (первый пример бесконечности, «большей», чем бесконечность ряда положительных целых чисел) к более поздней дате, но оно обсуждается и формулируется уже в письмах Кантора Дедекинду декабря 1873 г. (См., Кантор, цит. соч. стр. 329 — 330).

43 «Я это вижу, но я в это не верю» — писал Кантор Дедекинду (письмо от 29 июня 1877 г., Кантор цит. соч. стр. 344; интересно, что цитированные слова написаны Кантором по-французски, чем, вероятно, подчёркивается его эмоциональное состояние). Позже Брауэр (об этом выдающемся математике мы ещё поговорим ниже) показал, что наша интуиция восстанавливается, если рассматривать непрерывные (топологические) соответствия между прямой и пространством…

44 Кантор, цит. соч., стр. 173.

45 Кстати, в теории множеств вводится понятие так называемого пустого множества, в котором вообще нет элементов. Что-то вроде числа ноль в арифметике. В этих терминах можно сказать, что никто не знает сегодня, пусто или нет множество всех нечётных совершенных чисел.

46 По имени античного философа Платона (428 или 427 — 348 или 347 до н.э.), с идеями которого действительно перекликается мировоззрение Кантора.

47 Если не ошибаюсь, эту мысль высказывал выдающийся немецкий логик, математик и философ Фреге (Gottlog Frege (1848 — 1925)).

48 Этим свойством обладает множество всех подмножеств любого множества.

49 Речь идёт о парадоксах, связанных с автореферентностью, когда некоторое понятие определяется в терминах, включающих его самого, или когда некоторое понятие применяется к самому себе. Здесь можно упомянуть парадоксы «лжеца», известные с глубокой древности. Допустим, я произношу фразу: «То, что я сейчас сказал — ложь». Невозможно оценить это высказывание, ни как истинное, ни как ложное. К этому же типу относится известный в античности парадокс «все критяне лжецы» (представим себе, что это говорит критянин). Построение Рассела близко к известному парадоксу брадобрея: «В Севилье живёт цирюльник, который бреет всех тех севильцев, кто сам себя не бреет (и только их); как быть, если ему надо побриться?». Очевидно, такого рода цирюльник не может жить в Севилье, и эта идея лежит в основе так называемого диагонального метода Кантора и многих конструкций в теории алгорифмов. Однако, в случае теории множеств «Севильей» оказывается вся математическая Вселенная, и мы оказываемся перед лицом драматического противоречия. Ср., например, Френкель, Бар-Хиллел, цит. соч., Стефен К. Клини, Введение в метаматематику, иностранная литература, Москва 1957, пер. с англ., стр. 39 — 42.

50 «Никто не сможет изгнать нас из математического рая, созданного для нас Кантором!» — писал Гильберт (статья «О бесконечном», в книге Д. Гильберт, Основания Геометрии, ОГИЗ, Государственное Издательство Технико-Теоретической Литературы, Москва-Ленинград, 1948, стр. 350, пер. с нем).

51 В.А. Успенский, Семь размышлений на темы философии математики, Закономерности развития современной математики, Наука, М., 106 — 155, 1987.

Владимир Андреевич был, в частности, одним из основателей Отделения Структурной и Прикладной Лингвистики (знаменитый ОСИПЛ) на филологическом факультете МГУ. В.А. Успенский также оригинальный философ и вообще широко одарённый человек. Совсем недавно Владимир Андреевич выпустил двухтомник под характерным названием «Труды по Не Математике», ОГИ, М., 2002. Мои воспоминания об Успенском (и о мех-мате МГУ) можно найти в статье «Успенский пишет о Колмогорове», Историко-математические исследования, Вторая Серия, вып. 1(36), №2, 165 — 191, Янус, М. 1996. (Английская версия:B.A. Kushner, Memories of Mech-Math in the Sixties, Modern Logic Vol. 4, No2, 165-195, 1994).

52Заинтересованный читатель может подробнее прочесть обо всём этом во введении к моей книге «Лекции по конструктивному математическому анализу», Наука, М., 1973 (существует английский перевод: B.A. Kushner, Lectures on Constructive Mathematical Analysis, AMS, Providence, Rhode Island, 1984). Не предполагает особой подготовки и моё эссе «Марков и Бишоп», Вопросы Истории Естествознания и Техники, №1, 70 — 81, 1992 (опубликована также английская версия этой работы B.A.Kushner, Markov and Bishop, Golden Years of Moscow Mathematics, S. Zdravkovska, P. Duren, AMS-LMS, Providence, Rhode Island, 179 — 197, 1993). Более специальный характер носят мои статьи «Принцип бар-индукции и теория континуума у Брауэра», Закономерности развития современной математики, Наука, М., 230 — 250, 1987, «Арендт Гейтинг: Краткий очерк жизни и творчества», Методологический анализ оснований математики, Наука, М., 121 — 135, 1988, B.A. Kushner, Markov’s Constructive Analysis: a participant’s view, Theoretical Computer Science, vol. 219, 267-285, 1999.

53 А.А. Марков, Теория алгорифмов, Труды Матем. ин-та АН СССР им. В.А. Стеклова, т. 42, 1954. См., также цитированные выше два издания одноименной монографии Маркова и Нагорного.

54 Наши рассуждения показывают неприемлемость в конструктивной логике закона снятия двойного отрицания (если неверно, что неверно А, то А). Закон этот, часто рассматриваемый в логике отдельно, немедленно следует из более общего закона исключённого третьего. В самом деле, поскольку имеет место одно из двух А или не А, причём не А исключено, то остаётся А.

Главная страница | Архив | Содержание номера

Номер 19(330) 17 сентября 2003 г.